
NCPC 2018

Presentation of solutions

The Jury

2018-10-06

NCPC 2018 solutions



NCPC 2018 Jury

Per Austrin (KTH Royal Institute of Technology)

Andreas Björklund (Lund University)

Markus Dregi (Equinor/Webstep)

Bjarki Ágúst Guðmundsson (Syndis)

Antti Laaksonen (CSES)

Jimmy Mårdell (Spotify)

Luká² Polá£ek (Google)

Torstein Strømme (University of Bergen)

Pehr Söderman (Kattis)

Jon Marius Venstad (Oath)

NCPC 2018 solutions



B � Baby Bites

Problem

Check that input list is 1, 2, . . . , n except that some elements may
be replaced by �mumble�.

Obligatory Prolog Solution

solve(["mumble"|Tail], Pos) :-

NewPos is Pos+1,

solve(Tail, NewPos).

solve([Head|Tail], Pos) :-

number_string(Pos, Head),

NewPos is Pos+1,

solve(Tail, NewPos).

solve([], _) :- write("makes sense").

solve(_, _) :- write("something is fishy").

Statistics: 453 submissions, 225 accepted, �rst after 00:02

Problem Author: Torstein Strømme NCPC 2018 solutions



B � Baby Bites

Problem

Check that input list is 1, 2, . . . , n except that some elements may
be replaced by �mumble�.

Obligatory Prolog Solution

solve(["mumble"|Tail], Pos) :-

NewPos is Pos+1,

solve(Tail, NewPos).

solve([Head|Tail], Pos) :-

number_string(Pos, Head),

NewPos is Pos+1,

solve(Tail, NewPos).

solve([], _) :- write("makes sense").

solve(_, _) :- write("something is fishy").

Statistics: 453 submissions, 225 accepted, �rst after 00:02

Problem Author: Torstein Strømme NCPC 2018 solutions



B � Baby Bites

Problem

Check that input list is 1, 2, . . . , n except that some elements may
be replaced by �mumble�.

Obligatory Prolog Solution

solve(["mumble"|Tail], Pos) :-

NewPos is Pos+1,

solve(Tail, NewPos).

solve([Head|Tail], Pos) :-

number_string(Pos, Head),

NewPos is Pos+1,

solve(Tail, NewPos).

solve([], _) :- write("makes sense").

solve(_, _) :- write("something is fishy").

Statistics: 453 submissions, 225 accepted, �rst after 00:02

Problem Author: Torstein Strømme NCPC 2018 solutions



C � Code Cleanups

Problem

Given list of days of dirty pushes, each increasing dirtiness by 1 per
day, calculate how many cleanups are needed to keep dirtiness
below 20 at all times.

Solution

1 Simulate the process day by day
2 Whenever dirtiness reaches ≥ 20, we needed a cleanup the

evening before and reset everything
3 If dirt left at end of year, need an extra cleanup

Statistics: 669 submissions, 198 accepted, �rst after 00:11

Problem Author: Jon M. Venstad & Andreas Björklund NCPC 2018 solutions



C � Code Cleanups

Problem

Given list of days of dirty pushes, each increasing dirtiness by 1 per
day, calculate how many cleanups are needed to keep dirtiness
below 20 at all times.

Solution
1 Simulate the process day by day

2 Whenever dirtiness reaches ≥ 20, we needed a cleanup the
evening before and reset everything

3 If dirt left at end of year, need an extra cleanup

Statistics: 669 submissions, 198 accepted, �rst after 00:11

Problem Author: Jon M. Venstad & Andreas Björklund NCPC 2018 solutions



C � Code Cleanups

Problem

Given list of days of dirty pushes, each increasing dirtiness by 1 per
day, calculate how many cleanups are needed to keep dirtiness
below 20 at all times.

Solution
1 Simulate the process day by day
2 Whenever dirtiness reaches ≥ 20, we needed a cleanup the

evening before and reset everything

3 If dirt left at end of year, need an extra cleanup

Statistics: 669 submissions, 198 accepted, �rst after 00:11

Problem Author: Jon M. Venstad & Andreas Björklund NCPC 2018 solutions



C � Code Cleanups

Problem

Given list of days of dirty pushes, each increasing dirtiness by 1 per
day, calculate how many cleanups are needed to keep dirtiness
below 20 at all times.

Solution
1 Simulate the process day by day
2 Whenever dirtiness reaches ≥ 20, we needed a cleanup the

evening before and reset everything
3 If dirt left at end of year, need an extra cleanup

Statistics: 669 submissions, 198 accepted, �rst after 00:11

Problem Author: Jon M. Venstad & Andreas Björklund NCPC 2018 solutions



C � Code Cleanups

Problem

Given list of days of dirty pushes, each increasing dirtiness by 1 per
day, calculate how many cleanups are needed to keep dirtiness
below 20 at all times.

Solution
1 Simulate the process day by day
2 Whenever dirtiness reaches ≥ 20, we needed a cleanup the

evening before and reset everything
3 If dirt left at end of year, need an extra cleanup

Statistics: 669 submissions, 198 accepted, �rst after 00:11

Problem Author: Jon M. Venstad & Andreas Björklund NCPC 2018 solutions



H � House Lawn

Problem

Given specs for a bunch of lawnmowers, �nd cheapest ones with
su�ciently high capacity for given lawn size.

Solution

1 Mower with cutting rate c , cutting time t, recharge time r

cuts on average 10080ct/(t + r) square meters per week
2 Among those where this is at least lawn size, print names of

cheapest mowers.

Statistics: 842 submissions, 155 accepted, �rst after 00:25

Problem Author: Pehr Söderman NCPC 2018 solutions



H � House Lawn

Problem

Given specs for a bunch of lawnmowers, �nd cheapest ones with
su�ciently high capacity for given lawn size.

Solution
1 Mower with cutting rate c , cutting time t, recharge time r

cuts on average 10080ct/(t + r) square meters per week

2 Among those where this is at least lawn size, print names of
cheapest mowers.

Statistics: 842 submissions, 155 accepted, �rst after 00:25

Problem Author: Pehr Söderman NCPC 2018 solutions



H � House Lawn

Problem

Given specs for a bunch of lawnmowers, �nd cheapest ones with
su�ciently high capacity for given lawn size.

Solution
1 Mower with cutting rate c , cutting time t, recharge time r

cuts on average 10080ct/(t + r) square meters per week
2 Among those where this is at least lawn size, print names of

cheapest mowers.

Statistics: 842 submissions, 155 accepted, �rst after 00:25

Problem Author: Pehr Söderman NCPC 2018 solutions



H � House Lawn

Problem

Given specs for a bunch of lawnmowers, �nd cheapest ones with
su�ciently high capacity for given lawn size.

Solution
1 Mower with cutting rate c , cutting time t, recharge time r

cuts on average 10080ct/(t + r) square meters per week
2 Among those where this is at least lawn size, print names of

cheapest mowers.

Statistics: 842 submissions, 155 accepted, �rst after 00:25

Problem Author: Pehr Söderman NCPC 2018 solutions



I � Intergalactic Bidding

Problem

Given sequence of positive integers a1, . . . , an such that ai ≥ 2ai−1,
�nd subset that sums to t.

Solution

1 Doubling property ⇒ sequence superincreasing: ai >
∑i−1

j=1 aj

2 Implies solution must use the largest ai ≤ t (because the
smaller ones don't have a large enough sum)

3 Rinse and repeat � keep greedily adding largest number that
does not cause us to exceed t

4 Numbers are large, either use language that has big integers or
write yourself (only need addition and comparisons, which are
very easy to implement)

Statistics: 328 submissions, 91 accepted, �rst after 00:24

Problem Author: Bjarki Ágúst Guðmundsson NCPC 2018 solutions



I � Intergalactic Bidding

Problem

Given sequence of positive integers a1, . . . , an such that ai ≥ 2ai−1,
�nd subset that sums to t.

Solution

1 Doubling property ⇒ sequence superincreasing: ai >
∑i−1

j=1 aj

2 Implies solution must use the largest ai ≤ t (because the
smaller ones don't have a large enough sum)

3 Rinse and repeat � keep greedily adding largest number that
does not cause us to exceed t

4 Numbers are large, either use language that has big integers or
write yourself (only need addition and comparisons, which are
very easy to implement)

Statistics: 328 submissions, 91 accepted, �rst after 00:24

Problem Author: Bjarki Ágúst Guðmundsson NCPC 2018 solutions



I � Intergalactic Bidding

Problem

Given sequence of positive integers a1, . . . , an such that ai ≥ 2ai−1,
�nd subset that sums to t.

Solution

1 Doubling property ⇒ sequence superincreasing: ai >
∑i−1

j=1 aj

2 Implies solution must use the largest ai ≤ t (because the
smaller ones don't have a large enough sum)

3 Rinse and repeat � keep greedily adding largest number that
does not cause us to exceed t

4 Numbers are large, either use language that has big integers or
write yourself (only need addition and comparisons, which are
very easy to implement)

Statistics: 328 submissions, 91 accepted, �rst after 00:24

Problem Author: Bjarki Ágúst Guðmundsson NCPC 2018 solutions



I � Intergalactic Bidding

Problem

Given sequence of positive integers a1, . . . , an such that ai ≥ 2ai−1,
�nd subset that sums to t.

Solution

1 Doubling property ⇒ sequence superincreasing: ai >
∑i−1

j=1 aj

2 Implies solution must use the largest ai ≤ t (because the
smaller ones don't have a large enough sum)

3 Rinse and repeat � keep greedily adding largest number that
does not cause us to exceed t

4 Numbers are large, either use language that has big integers or
write yourself (only need addition and comparisons, which are
very easy to implement)

Statistics: 328 submissions, 91 accepted, �rst after 00:24

Problem Author: Bjarki Ágúst Guðmundsson NCPC 2018 solutions



I � Intergalactic Bidding

Problem

Given sequence of positive integers a1, . . . , an such that ai ≥ 2ai−1,
�nd subset that sums to t.

Solution

1 Doubling property ⇒ sequence superincreasing: ai >
∑i−1

j=1 aj

2 Implies solution must use the largest ai ≤ t (because the
smaller ones don't have a large enough sum)

3 Rinse and repeat � keep greedily adding largest number that
does not cause us to exceed t

4 Numbers are large, either use language that has big integers or
write yourself (only need addition and comparisons, which are
very easy to implement)

Statistics: 328 submissions, 91 accepted, �rst after 00:24

Problem Author: Bjarki Ágúst Guðmundsson NCPC 2018 solutions



I � Intergalactic Bidding

Problem

Given sequence of positive integers a1, . . . , an such that ai ≥ 2ai−1,
�nd subset that sums to t.

Solution

1 Doubling property ⇒ sequence superincreasing: ai >
∑i−1

j=1 aj

2 Implies solution must use the largest ai ≤ t (because the
smaller ones don't have a large enough sum)

3 Rinse and repeat � keep greedily adding largest number that
does not cause us to exceed t

4 Numbers are large, either use language that has big integers or
write yourself (only need addition and comparisons, which are
very easy to implement)

Statistics: 328 submissions, 91 accepted, �rst after 00:24

Problem Author: Bjarki Ágúst Guðmundsson NCPC 2018 solutions



J � Jumbled String

Problem

Create a bit string that has given numbers of subsequences �00�,
�01�, �10� and �11�, or report that this is not possible.

Solution

1 Determine how many 0's and 1's the string has
(x zeros gives x(x−1)

2
many �00�, solve for x)

2 Greedily �nd suitable positions for 0's from left to right. All
other positions will have 1's.

3 If this process fails, there are no solutions.
4 Watch out for small special cases:

if number of �00� is 0, two solutions x = 0 and x = 1
solution must be non-empty

(you can also handle small cases using brute force).

Statistics: 359 submissions, 38 accepted, �rst after 00:22

Problem Author: Antti Laaksonen NCPC 2018 solutions



J � Jumbled String

Problem

Create a bit string that has given numbers of subsequences �00�,
�01�, �10� and �11�, or report that this is not possible.

Solution
1 Determine how many 0's and 1's the string has

(x zeros gives x(x−1)
2

many �00�, solve for x)

2 Greedily �nd suitable positions for 0's from left to right. All
other positions will have 1's.

3 If this process fails, there are no solutions.
4 Watch out for small special cases:

if number of �00� is 0, two solutions x = 0 and x = 1
solution must be non-empty

(you can also handle small cases using brute force).

Statistics: 359 submissions, 38 accepted, �rst after 00:22

Problem Author: Antti Laaksonen NCPC 2018 solutions



J � Jumbled String

Problem

Create a bit string that has given numbers of subsequences �00�,
�01�, �10� and �11�, or report that this is not possible.

Solution
1 Determine how many 0's and 1's the string has

(x zeros gives x(x−1)
2

many �00�, solve for x)
2 Greedily �nd suitable positions for 0's from left to right. All

other positions will have 1's.

3 If this process fails, there are no solutions.
4 Watch out for small special cases:

if number of �00� is 0, two solutions x = 0 and x = 1
solution must be non-empty

(you can also handle small cases using brute force).

Statistics: 359 submissions, 38 accepted, �rst after 00:22

Problem Author: Antti Laaksonen NCPC 2018 solutions



J � Jumbled String

Problem

Create a bit string that has given numbers of subsequences �00�,
�01�, �10� and �11�, or report that this is not possible.

Solution
1 Determine how many 0's and 1's the string has

(x zeros gives x(x−1)
2

many �00�, solve for x)
2 Greedily �nd suitable positions for 0's from left to right. All

other positions will have 1's.
3 If this process fails, there are no solutions.

4 Watch out for small special cases:
if number of �00� is 0, two solutions x = 0 and x = 1
solution must be non-empty

(you can also handle small cases using brute force).

Statistics: 359 submissions, 38 accepted, �rst after 00:22

Problem Author: Antti Laaksonen NCPC 2018 solutions



J � Jumbled String

Problem

Create a bit string that has given numbers of subsequences �00�,
�01�, �10� and �11�, or report that this is not possible.

Solution
1 Determine how many 0's and 1's the string has

(x zeros gives x(x−1)
2

many �00�, solve for x)
2 Greedily �nd suitable positions for 0's from left to right. All

other positions will have 1's.
3 If this process fails, there are no solutions.
4 Watch out for small special cases:

if number of �00� is 0, two solutions x = 0 and x = 1
solution must be non-empty

(you can also handle small cases using brute force).

Statistics: 359 submissions, 38 accepted, �rst after 00:22

Problem Author: Antti Laaksonen NCPC 2018 solutions



J � Jumbled String

Problem

Create a bit string that has given numbers of subsequences �00�,
�01�, �10� and �11�, or report that this is not possible.

Solution
1 Determine how many 0's and 1's the string has

(x zeros gives x(x−1)
2

many �00�, solve for x)
2 Greedily �nd suitable positions for 0's from left to right. All

other positions will have 1's.
3 If this process fails, there are no solutions.
4 Watch out for small special cases:

if number of �00� is 0, two solutions x = 0 and x = 1
solution must be non-empty

(you can also handle small cases using brute force).

Statistics: 359 submissions, 38 accepted, �rst after 00:22
Problem Author: Antti Laaksonen NCPC 2018 solutions



E � Explosion Exploit

Problem

Given healths of your own and your opponent's minions in a card
game, what is probability that all opponent's minions die after
dealing d damage one at a time randomly to living minions?

Solution

1 Way too slow exhaustive search solution: for each living
minion, decrease its health by one and recursively compute
answer for the updated healths, then average to get answer.

2 Speed up using dynamic programming / memoisation.

Problem: still slow, number of states is 710 ≈ 300 millions

3 Optimization: order of your/opponent's minions does not
a�ect answer � normalize healths to be in sorted order.
Number of possible states is reduced to

(
5+7−1
7−1

)2
= 213 444

Statistics: 144 submissions, 41 accepted, �rst after 00:34

Problem Author: Jimmy Mårdell NCPC 2018 solutions



E � Explosion Exploit

Problem

Given healths of your own and your opponent's minions in a card
game, what is probability that all opponent's minions die after
dealing d damage one at a time randomly to living minions?

Solution
1 Way too slow exhaustive search solution: for each living

minion, decrease its health by one and recursively compute
answer for the updated healths, then average to get answer.

2 Speed up using dynamic programming / memoisation.

Problem: still slow, number of states is 710 ≈ 300 millions

3 Optimization: order of your/opponent's minions does not
a�ect answer � normalize healths to be in sorted order.
Number of possible states is reduced to

(
5+7−1
7−1

)2
= 213 444

Statistics: 144 submissions, 41 accepted, �rst after 00:34

Problem Author: Jimmy Mårdell NCPC 2018 solutions



E � Explosion Exploit

Problem

Given healths of your own and your opponent's minions in a card
game, what is probability that all opponent's minions die after
dealing d damage one at a time randomly to living minions?

Solution
1 Way too slow exhaustive search solution: for each living

minion, decrease its health by one and recursively compute
answer for the updated healths, then average to get answer.

2 Speed up using dynamic programming / memoisation.

Problem: still slow, number of states is 710 ≈ 300 millions
3 Optimization: order of your/opponent's minions does not

a�ect answer � normalize healths to be in sorted order.
Number of possible states is reduced to

(
5+7−1
7−1

)2
= 213 444

Statistics: 144 submissions, 41 accepted, �rst after 00:34

Problem Author: Jimmy Mårdell NCPC 2018 solutions



E � Explosion Exploit

Problem

Given healths of your own and your opponent's minions in a card
game, what is probability that all opponent's minions die after
dealing d damage one at a time randomly to living minions?

Solution
1 Way too slow exhaustive search solution: for each living

minion, decrease its health by one and recursively compute
answer for the updated healths, then average to get answer.

2 Speed up using dynamic programming / memoisation.
Problem: still slow, number of states is 710 ≈ 300 millions

3 Optimization: order of your/opponent's minions does not
a�ect answer � normalize healths to be in sorted order.
Number of possible states is reduced to

(
5+7−1
7−1

)2
= 213 444

Statistics: 144 submissions, 41 accepted, �rst after 00:34

Problem Author: Jimmy Mårdell NCPC 2018 solutions



E � Explosion Exploit

Problem

Given healths of your own and your opponent's minions in a card
game, what is probability that all opponent's minions die after
dealing d damage one at a time randomly to living minions?

Solution
1 Way too slow exhaustive search solution: for each living

minion, decrease its health by one and recursively compute
answer for the updated healths, then average to get answer.

2 Speed up using dynamic programming / memoisation.
Problem: still slow, number of states is 710 ≈ 300 millions

3 Optimization: order of your/opponent's minions does not
a�ect answer � normalize healths to be in sorted order.
Number of possible states is reduced to

(
5+7−1
7−1

)2
= 213 444

Statistics: 144 submissions, 41 accepted, �rst after 00:34

Problem Author: Jimmy Mårdell NCPC 2018 solutions



E � Explosion Exploit

Problem

Given healths of your own and your opponent's minions in a card
game, what is probability that all opponent's minions die after
dealing d damage one at a time randomly to living minions?

Solution
1 Way too slow exhaustive search solution: for each living

minion, decrease its health by one and recursively compute
answer for the updated healths, then average to get answer.

2 Speed up using dynamic programming / memoisation.
Problem: still slow, number of states is 710 ≈ 300 millions

3 Optimization: order of your/opponent's minions does not
a�ect answer � normalize healths to be in sorted order.
Number of possible states is reduced to

(
5+7−1
7−1

)2
= 213 444

Statistics: 144 submissions, 41 accepted, �rst after 00:34
Problem Author: Jimmy Mårdell NCPC 2018 solutions



K � King's Colors

Problem

Given tree T on n vertices, how many k-colorings does it have that
use all k colors?

Statistics: 123 submissions, 33 accepted, �rst after 00:30

Problem Author: Torstein Strømme NCPC 2018 solutions



K � King's Colors

Problem

Given tree T on n vertices, how many k-colorings does it have that
use all k colors?

Solution 1 [Dynamic Programming]

1 For any leaf v , two possibilities:

1 it is the only node with its color:
k · f (T \ v , k − 1) such colorings

2 some other node has same color:
(k − 1) · f (T \ v , k) such colorings
(can pick any color except the color of parent node)

2 We see that answer only depends on n and k , not on structure
of T and get recurrence

f (n, k) = k · f (n − 1, k − 1) + (k − 1) · f (n − 1, k)

3 Compute in your favorite way in O(nk) time
Statistics: 123 submissions, 33 accepted, �rst after 00:30

Problem Author: Torstein Strømme NCPC 2018 solutions



K � King's Colors

Problem

Given tree T on n vertices, how many k-colorings does it have that
use all k colors?

Solution 1 [Dynamic Programming]

1 For any leaf v , two possibilities:
1 it is the only node with its color:

k · f (T \ v , k − 1) such colorings

2 some other node has same color:
(k − 1) · f (T \ v , k) such colorings
(can pick any color except the color of parent node)

2 We see that answer only depends on n and k , not on structure
of T and get recurrence

f (n, k) = k · f (n − 1, k − 1) + (k − 1) · f (n − 1, k)

3 Compute in your favorite way in O(nk) time
Statistics: 123 submissions, 33 accepted, �rst after 00:30

Problem Author: Torstein Strømme NCPC 2018 solutions



K � King's Colors

Problem

Given tree T on n vertices, how many k-colorings does it have that
use all k colors?

Solution 1 [Dynamic Programming]

1 For any leaf v , two possibilities:
1 it is the only node with its color:

k · f (T \ v , k − 1) such colorings
2 some other node has same color:

(k − 1) · f (T \ v , k) such colorings
(can pick any color except the color of parent node)

2 We see that answer only depends on n and k , not on structure
of T and get recurrence

f (n, k) = k · f (n − 1, k − 1) + (k − 1) · f (n − 1, k)

3 Compute in your favorite way in O(nk) time
Statistics: 123 submissions, 33 accepted, �rst after 00:30

Problem Author: Torstein Strømme NCPC 2018 solutions



K � King's Colors

Problem

Given tree T on n vertices, how many k-colorings does it have that
use all k colors?

Solution 1 [Dynamic Programming]

1 For any leaf v , two possibilities:
1 it is the only node with its color:

k · f (T \ v , k − 1) such colorings
2 some other node has same color:

(k − 1) · f (T \ v , k) such colorings
(can pick any color except the color of parent node)

2 We see that answer only depends on n and k , not on structure
of T and get recurrence

f (n, k) = k · f (n − 1, k − 1) + (k − 1) · f (n − 1, k)

3 Compute in your favorite way in O(nk) time
Statistics: 123 submissions, 33 accepted, �rst after 00:30

Problem Author: Torstein Strømme NCPC 2018 solutions



K � King's Colors

Problem

Given tree T on n vertices, how many k-colorings does it have that
use all k colors?

Solution 1 [Dynamic Programming]

1 For any leaf v , two possibilities:
1 it is the only node with its color:

k · f (T \ v , k − 1) such colorings
2 some other node has same color:

(k − 1) · f (T \ v , k) such colorings
(can pick any color except the color of parent node)

2 We see that answer only depends on n and k , not on structure
of T and get recurrence

f (n, k) = k · f (n − 1, k − 1) + (k − 1) · f (n − 1, k)

3 Compute in your favorite way in O(nk) time

Statistics: 123 submissions, 33 accepted, �rst after 00:30

Problem Author: Torstein Strømme NCPC 2018 solutions



K � King's Colors

Problem

Given tree T on n vertices, how many k-colorings does it have that
use all k colors?

Solution 2 [Inclusion-Exclusion]

1 Number of c-colorings (not necessarily using all c colors) is
c(c − 1)n−1: root can have any color and as we go down the
tree each node has c − 1 choices

2 By principle of inclusion-exclusion, answer is

f (n, k) =
k∑

c=1

(−1)k−c

(
k

c

)
c(c − 1)n−1

3 Can compute in O(k log n) time

Statistics: 123 submissions, 33 accepted, �rst after 00:30

Problem Author: Torstein Strømme NCPC 2018 solutions



K � King's Colors

Problem

Given tree T on n vertices, how many k-colorings does it have that
use all k colors?

Solution 2 [Inclusion-Exclusion]

1 Number of c-colorings (not necessarily using all c colors) is
c(c − 1)n−1: root can have any color and as we go down the
tree each node has c − 1 choices

2 By principle of inclusion-exclusion, answer is

f (n, k) =
k∑

c=1

(−1)k−c

(
k

c

)
c(c − 1)n−1

3 Can compute in O(k log n) time

Statistics: 123 submissions, 33 accepted, �rst after 00:30

Problem Author: Torstein Strømme NCPC 2018 solutions



K � King's Colors

Problem

Given tree T on n vertices, how many k-colorings does it have that
use all k colors?

Solution 2 [Inclusion-Exclusion]

1 Number of c-colorings (not necessarily using all c colors) is
c(c − 1)n−1: root can have any color and as we go down the
tree each node has c − 1 choices

2 By principle of inclusion-exclusion, answer is

f (n, k) =
k∑

c=1

(−1)k−c

(
k

c

)
c(c − 1)n−1

3 Can compute in O(k log n) time

Statistics: 123 submissions, 33 accepted, �rst after 00:30

Problem Author: Torstein Strømme NCPC 2018 solutions



K � King's Colors

Problem

Given tree T on n vertices, how many k-colorings does it have that
use all k colors?

Solution 2 [Inclusion-Exclusion]

1 Number of c-colorings (not necessarily using all c colors) is
c(c − 1)n−1: root can have any color and as we go down the
tree each node has c − 1 choices

2 By principle of inclusion-exclusion, answer is

f (n, k) =
k∑

c=1

(−1)k−c

(
k

c

)
c(c − 1)n−1

3 Can compute in O(k log n) time

Statistics: 123 submissions, 33 accepted, �rst after 00:30
Problem Author: Torstein Strømme NCPC 2018 solutions



D � Delivery Delays

Problem

Given list of orders made and when they are ready to be delivered
from origin to destination, what is smallest possible maximum delay
to deliver them in �rst-come-�rst-served order?

Solution

1 Find shortest distances between all pairs of nodes in the graph
(using Dijkstra's algorithm for each vertex)

2 Binary search for answer D
3 To check if delay D possible, let LD(i) be latest possible start

time for delivering orders i , i + 1, . . . , k with max delay D

4 Compute LD(i): guess how many orders j to bring together
with i , simulate delivering them, then use value of LD(i + j)

5 Time complexity is O(nm logm + k2logDmax).

Statistics: 40 submissions, 10 accepted, �rst after 01:25

Problem Author: Bjarki Ágúst Guðmundsson NCPC 2018 solutions



D � Delivery Delays

Problem

Given list of orders made and when they are ready to be delivered
from origin to destination, what is smallest possible maximum delay
to deliver them in �rst-come-�rst-served order?

Solution
1 Find shortest distances between all pairs of nodes in the graph

(using Dijkstra's algorithm for each vertex)

2 Binary search for answer D
3 To check if delay D possible, let LD(i) be latest possible start

time for delivering orders i , i + 1, . . . , k with max delay D

4 Compute LD(i): guess how many orders j to bring together
with i , simulate delivering them, then use value of LD(i + j)

5 Time complexity is O(nm logm + k2logDmax).

Statistics: 40 submissions, 10 accepted, �rst after 01:25

Problem Author: Bjarki Ágúst Guðmundsson NCPC 2018 solutions



D � Delivery Delays

Problem

Given list of orders made and when they are ready to be delivered
from origin to destination, what is smallest possible maximum delay
to deliver them in �rst-come-�rst-served order?

Solution
1 Find shortest distances between all pairs of nodes in the graph

(using Dijkstra's algorithm for each vertex)
2 Binary search for answer D

3 To check if delay D possible, let LD(i) be latest possible start
time for delivering orders i , i + 1, . . . , k with max delay D

4 Compute LD(i): guess how many orders j to bring together
with i , simulate delivering them, then use value of LD(i + j)

5 Time complexity is O(nm logm + k2logDmax).

Statistics: 40 submissions, 10 accepted, �rst after 01:25

Problem Author: Bjarki Ágúst Guðmundsson NCPC 2018 solutions



D � Delivery Delays

Problem

Given list of orders made and when they are ready to be delivered
from origin to destination, what is smallest possible maximum delay
to deliver them in �rst-come-�rst-served order?

Solution
1 Find shortest distances between all pairs of nodes in the graph

(using Dijkstra's algorithm for each vertex)
2 Binary search for answer D
3 To check if delay D possible, let LD(i) be latest possible start

time for delivering orders i , i + 1, . . . , k with max delay D

4 Compute LD(i): guess how many orders j to bring together
with i , simulate delivering them, then use value of LD(i + j)

5 Time complexity is O(nm logm + k2logDmax).

Statistics: 40 submissions, 10 accepted, �rst after 01:25

Problem Author: Bjarki Ágúst Guðmundsson NCPC 2018 solutions



D � Delivery Delays

Problem

Given list of orders made and when they are ready to be delivered
from origin to destination, what is smallest possible maximum delay
to deliver them in �rst-come-�rst-served order?

Solution
1 Find shortest distances between all pairs of nodes in the graph

(using Dijkstra's algorithm for each vertex)
2 Binary search for answer D
3 To check if delay D possible, let LD(i) be latest possible start

time for delivering orders i , i + 1, . . . , k with max delay D

4 Compute LD(i): guess how many orders j to bring together
with i , simulate delivering them, then use value of LD(i + j)

5 Time complexity is O(nm logm + k2logDmax).

Statistics: 40 submissions, 10 accepted, �rst after 01:25

Problem Author: Bjarki Ágúst Guðmundsson NCPC 2018 solutions



D � Delivery Delays

Problem

Given list of orders made and when they are ready to be delivered
from origin to destination, what is smallest possible maximum delay
to deliver them in �rst-come-�rst-served order?

Solution
1 Find shortest distances between all pairs of nodes in the graph

(using Dijkstra's algorithm for each vertex)
2 Binary search for answer D
3 To check if delay D possible, let LD(i) be latest possible start

time for delivering orders i , i + 1, . . . , k with max delay D

4 Compute LD(i): guess how many orders j to bring together
with i , simulate delivering them, then use value of LD(i + j)

5 Time complexity is O(nm logm + k2logDmax).

Statistics: 40 submissions, 10 accepted, �rst after 01:25

Problem Author: Bjarki Ágúst Guðmundsson NCPC 2018 solutions



D � Delivery Delays

Problem

Given list of orders made and when they are ready to be delivered
from origin to destination, what is smallest possible maximum delay
to deliver them in �rst-come-�rst-served order?

Solution
1 Find shortest distances between all pairs of nodes in the graph

(using Dijkstra's algorithm for each vertex)
2 Binary search for answer D
3 To check if delay D possible, let LD(i) be latest possible start

time for delivering orders i , i + 1, . . . , k with max delay D

4 Compute LD(i): guess how many orders j to bring together
with i , simulate delivering them, then use value of LD(i + j)

5 Time complexity is O(nm logm + k2logDmax).

Statistics: 40 submissions, 10 accepted, �rst after 01:25
Problem Author: Bjarki Ágúst Guðmundsson NCPC 2018 solutions



A � Altruistic Amphibians

Problem

Given leap capacities, weights, and heights of a set of frogs, decide
how many frogs can escape a pit of given depth d if they build piles
of frogs to elevate each other. No frog can carry its own weight.

Solution

1 A frog can only help lighter ones, so can assume the frogs
leave pit in order of increasing weight.

2 Maintain array H[w ] = height of highest frog pile that can
carry a weight of w (for w up to max weight).

3 For each frog (li ,wi , hi ) by decreasing weight (time reversal):
1 Frog escapes if li + H[wi ] > d

2 Update H[w ] = max(H[w ], hi +H[wi +w ]) for 1 ≤ w ≤ wi − 1

4 Time complexity is O(n log n +
∑

wi )

Statistics: 55 submissions, 1 accepted, �rst after 04:29

Problem Author: Andreas Björklund NCPC 2018 solutions



A � Altruistic Amphibians

Problem

Given leap capacities, weights, and heights of a set of frogs, decide
how many frogs can escape a pit of given depth d if they build piles
of frogs to elevate each other. No frog can carry its own weight.

Solution
1 A frog can only help lighter ones, so can assume the frogs

leave pit in order of increasing weight.

2 Maintain array H[w ] = height of highest frog pile that can
carry a weight of w (for w up to max weight).

3 For each frog (li ,wi , hi ) by decreasing weight (time reversal):
1 Frog escapes if li + H[wi ] > d

2 Update H[w ] = max(H[w ], hi +H[wi +w ]) for 1 ≤ w ≤ wi − 1

4 Time complexity is O(n log n +
∑

wi )

Statistics: 55 submissions, 1 accepted, �rst after 04:29

Problem Author: Andreas Björklund NCPC 2018 solutions



A � Altruistic Amphibians

Problem

Given leap capacities, weights, and heights of a set of frogs, decide
how many frogs can escape a pit of given depth d if they build piles
of frogs to elevate each other. No frog can carry its own weight.

Solution
1 A frog can only help lighter ones, so can assume the frogs

leave pit in order of increasing weight.
2 Maintain array H[w ] = height of highest frog pile that can

carry a weight of w (for w up to max weight).

3 For each frog (li ,wi , hi ) by decreasing weight (time reversal):
1 Frog escapes if li + H[wi ] > d

2 Update H[w ] = max(H[w ], hi +H[wi +w ]) for 1 ≤ w ≤ wi − 1

4 Time complexity is O(n log n +
∑

wi )

Statistics: 55 submissions, 1 accepted, �rst after 04:29

Problem Author: Andreas Björklund NCPC 2018 solutions



A � Altruistic Amphibians

Problem

Given leap capacities, weights, and heights of a set of frogs, decide
how many frogs can escape a pit of given depth d if they build piles
of frogs to elevate each other. No frog can carry its own weight.

Solution
1 A frog can only help lighter ones, so can assume the frogs

leave pit in order of increasing weight.
2 Maintain array H[w ] = height of highest frog pile that can

carry a weight of w (for w up to max weight).
3 For each frog (li ,wi , hi ) by decreasing weight (time reversal):

1 Frog escapes if li + H[wi ] > d

2 Update H[w ] = max(H[w ], hi +H[wi +w ]) for 1 ≤ w ≤ wi − 1

4 Time complexity is O(n log n +
∑

wi )

Statistics: 55 submissions, 1 accepted, �rst after 04:29

Problem Author: Andreas Björklund NCPC 2018 solutions



A � Altruistic Amphibians

Problem

Given leap capacities, weights, and heights of a set of frogs, decide
how many frogs can escape a pit of given depth d if they build piles
of frogs to elevate each other. No frog can carry its own weight.

Solution
1 A frog can only help lighter ones, so can assume the frogs

leave pit in order of increasing weight.
2 Maintain array H[w ] = height of highest frog pile that can

carry a weight of w (for w up to max weight).
3 For each frog (li ,wi , hi ) by decreasing weight (time reversal):

1 Frog escapes if li + H[wi ] > d

2 Update H[w ] = max(H[w ], hi +H[wi +w ]) for 1 ≤ w ≤ wi − 1

4 Time complexity is O(n log n +
∑

wi )

Statistics: 55 submissions, 1 accepted, �rst after 04:29

Problem Author: Andreas Björklund NCPC 2018 solutions



A � Altruistic Amphibians

Problem

Given leap capacities, weights, and heights of a set of frogs, decide
how many frogs can escape a pit of given depth d if they build piles
of frogs to elevate each other. No frog can carry its own weight.

Solution
1 A frog can only help lighter ones, so can assume the frogs

leave pit in order of increasing weight.
2 Maintain array H[w ] = height of highest frog pile that can

carry a weight of w (for w up to max weight).
3 For each frog (li ,wi , hi ) by decreasing weight (time reversal):

1 Frog escapes if li + H[wi ] > d

2 Update H[w ] = max(H[w ], hi +H[wi +w ]) for 1 ≤ w ≤ wi − 1

4 Time complexity is O(n log n +
∑

wi )

Statistics: 55 submissions, 1 accepted, �rst after 04:29
Problem Author: Andreas Björklund NCPC 2018 solutions



G � Game Scheduling

Problem

Given m teams with n players per team, construct a round based
schedule so all players play against all players from all other teams,
such that each player has at most one bye (free round).

Statistics: 10 submissions, 0 accepted

Problem Author: Jimmy Mårdell NCPC 2018 solutions



G � Game Scheduling

Problem

Given m teams with n players per team, construct a round based
schedule so all players play against all players from all other teams,
such that each player has at most one bye (free round).

Solution 1 [Explicit construction]

1 The n = 1 case: classic round robin scheme

2 Idea: make �pseudorounds� where all players with index i play
against all players with index j 6= i on other teams, using basic
round robin schedule on n players.

3 Add games where players with index i meet each other via
round robin schedule on m teams:

1 n even: just add them after pseudorounds.
2 n odd: schedule them during pseudoround where i had bye.
3 n and m odd: use one last round to collect remaining games.

Statistics: 10 submissions, 0 accepted

Problem Author: Jimmy Mårdell NCPC 2018 solutions



G � Game Scheduling

Problem

Given m teams with n players per team, construct a round based
schedule so all players play against all players from all other teams,
such that each player has at most one bye (free round).

Solution 1 [Explicit construction]

1 The n = 1 case: classic round robin scheme
2 Idea: make �pseudorounds� where all players with index i play

against all players with index j 6= i on other teams, using basic
round robin schedule on n players.

3 Add games where players with index i meet each other via
round robin schedule on m teams:

1 n even: just add them after pseudorounds.
2 n odd: schedule them during pseudoround where i had bye.
3 n and m odd: use one last round to collect remaining games.

Statistics: 10 submissions, 0 accepted

Problem Author: Jimmy Mårdell NCPC 2018 solutions



G � Game Scheduling

Problem

Given m teams with n players per team, construct a round based
schedule so all players play against all players from all other teams,
such that each player has at most one bye (free round).

Solution 1 [Explicit construction]

1 The n = 1 case: classic round robin scheme
2 Idea: make �pseudorounds� where all players with index i play

against all players with index j 6= i on other teams, using basic
round robin schedule on n players.

3 Add games where players with index i meet each other via
round robin schedule on m teams:

1 n even: just add them after pseudorounds.
2 n odd: schedule them during pseudoround where i had bye.
3 n and m odd: use one last round to collect remaining games.

Statistics: 10 submissions, 0 accepted

Problem Author: Jimmy Mårdell NCPC 2018 solutions



G � Game Scheduling

Problem

Given m teams with n players per team, construct a round based
schedule so all players play against all players from all other teams,
such that each player has at most one bye (free round).

Solution 1 [Explicit construction]

1 The n = 1 case: classic round robin scheme
2 Idea: make �pseudorounds� where all players with index i play

against all players with index j 6= i on other teams, using basic
round robin schedule on n players.

3 Add games where players with index i meet each other via
round robin schedule on m teams:

1 n even: just add them after pseudorounds.

2 n odd: schedule them during pseudoround where i had bye.
3 n and m odd: use one last round to collect remaining games.

Statistics: 10 submissions, 0 accepted

Problem Author: Jimmy Mårdell NCPC 2018 solutions



G � Game Scheduling

Problem

Given m teams with n players per team, construct a round based
schedule so all players play against all players from all other teams,
such that each player has at most one bye (free round).

Solution 1 [Explicit construction]

1 The n = 1 case: classic round robin scheme
2 Idea: make �pseudorounds� where all players with index i play

against all players with index j 6= i on other teams, using basic
round robin schedule on n players.

3 Add games where players with index i meet each other via
round robin schedule on m teams:

1 n even: just add them after pseudorounds.
2 n odd: schedule them during pseudoround where i had bye.

3 n and m odd: use one last round to collect remaining games.
Statistics: 10 submissions, 0 accepted

Problem Author: Jimmy Mårdell NCPC 2018 solutions



G � Game Scheduling

Problem

Given m teams with n players per team, construct a round based
schedule so all players play against all players from all other teams,
such that each player has at most one bye (free round).

Solution 1 [Explicit construction]

1 The n = 1 case: classic round robin scheme
2 Idea: make �pseudorounds� where all players with index i play

against all players with index j 6= i on other teams, using basic
round robin schedule on n players.

3 Add games where players with index i meet each other via
round robin schedule on m teams:

1 n even: just add them after pseudorounds.
2 n odd: schedule them during pseudoround where i had bye.
3 n and m odd: use one last round to collect remaining games.

Statistics: 10 submissions, 0 accepted

Problem Author: Jimmy Mårdell NCPC 2018 solutions



G � Game Scheduling

Problem

Given m teams with n players per team, construct a round based
schedule so all players play against all players from all other teams,
such that each player has at most one bye (free round).

Solution 2 [General solution]

1 Construct graph with m · n nodes representing all players, with
edges between players from di�erent teams.

2 A schedule using d = n(m − 1) + 1 days is an edge coloring of
the graph with d colors.

3 Vizing's Theorem: every graph has an edge coloring using

∆ + 1 colors where ∆ is max degree. Exactly what we need.
4 Use e�cient algorithm for �nding a (∆ + 1)-edge coloring

(Misra-Gries). Naive implementation su�ciently fast.

Statistics: 10 submissions, 0 accepted

Problem Author: Jimmy Mårdell NCPC 2018 solutions

https://wikivisually.com/wiki/Misra_%26_Gries_edge_coloring_algorithm


G � Game Scheduling

Problem

Given m teams with n players per team, construct a round based
schedule so all players play against all players from all other teams,
such that each player has at most one bye (free round).

Solution 2 [General solution]

1 Construct graph with m · n nodes representing all players, with
edges between players from di�erent teams.

2 A schedule using d = n(m − 1) + 1 days is an edge coloring of
the graph with d colors.

3 Vizing's Theorem: every graph has an edge coloring using

∆ + 1 colors where ∆ is max degree. Exactly what we need.
4 Use e�cient algorithm for �nding a (∆ + 1)-edge coloring

(Misra-Gries). Naive implementation su�ciently fast.

Statistics: 10 submissions, 0 accepted

Problem Author: Jimmy Mårdell NCPC 2018 solutions

https://wikivisually.com/wiki/Misra_%26_Gries_edge_coloring_algorithm


G � Game Scheduling

Problem

Given m teams with n players per team, construct a round based
schedule so all players play against all players from all other teams,
such that each player has at most one bye (free round).

Solution 2 [General solution]

1 Construct graph with m · n nodes representing all players, with
edges between players from di�erent teams.

2 A schedule using d = n(m − 1) + 1 days is an edge coloring of
the graph with d colors.

3 Vizing's Theorem: every graph has an edge coloring using

∆ + 1 colors where ∆ is max degree. Exactly what we need.

4 Use e�cient algorithm for �nding a (∆ + 1)-edge coloring
(Misra-Gries). Naive implementation su�ciently fast.

Statistics: 10 submissions, 0 accepted

Problem Author: Jimmy Mårdell NCPC 2018 solutions

https://wikivisually.com/wiki/Misra_%26_Gries_edge_coloring_algorithm


G � Game Scheduling

Problem

Given m teams with n players per team, construct a round based
schedule so all players play against all players from all other teams,
such that each player has at most one bye (free round).

Solution 2 [General solution]

1 Construct graph with m · n nodes representing all players, with
edges between players from di�erent teams.

2 A schedule using d = n(m − 1) + 1 days is an edge coloring of
the graph with d colors.

3 Vizing's Theorem: every graph has an edge coloring using

∆ + 1 colors where ∆ is max degree. Exactly what we need.
4 Use e�cient algorithm for �nding a (∆ + 1)-edge coloring

(Misra-Gries). Naive implementation su�ciently fast.

Statistics: 10 submissions, 0 accepted

Problem Author: Jimmy Mårdell NCPC 2018 solutions

https://wikivisually.com/wiki/Misra_%26_Gries_edge_coloring_algorithm


G � Game Scheduling

Problem

Given m teams with n players per team, construct a round based
schedule so all players play against all players from all other teams,
such that each player has at most one bye (free round).

Solution 2 [General solution]

1 Construct graph with m · n nodes representing all players, with
edges between players from di�erent teams.

2 A schedule using d = n(m − 1) + 1 days is an edge coloring of
the graph with d colors.

3 Vizing's Theorem: every graph has an edge coloring using

∆ + 1 colors where ∆ is max degree. Exactly what we need.
4 Use e�cient algorithm for �nding a (∆ + 1)-edge coloring

(Misra-Gries). Naive implementation su�ciently fast.

Statistics: 10 submissions, 0 accepted
Problem Author: Jimmy Mårdell NCPC 2018 solutions

https://wikivisually.com/wiki/Misra_%26_Gries_edge_coloring_algorithm


F � Firing the Phaser

Problem

Given set of axis-aligned rectangles, �nd max number of rectangles
that can be intersected by a straight line segment of length `.

Solution (1/3)

Statistics: 19 submissions, 0 accepted

Problem Author: Pål Grønås Drange and Markus Dregi NCPC 2018 solutions



F � Firing the Phaser

Problem

Given set of axis-aligned rectangles, �nd max number of rectangles
that can be intersected by a straight line segment of length `.

Solution (1/3)

1 Idea: given the line on which the optimal segment lies, we get
a relatively easy one-dimensional problem about intervals.

2 So we just have to �nd a small candidate set of lines (= pairs
of points) to try.

Statistics: 19 submissions, 0 accepted

Problem Author: Pål Grønås Drange and Markus Dregi NCPC 2018 solutions



F � Firing the Phaser

Problem

Given set of axis-aligned rectangles, �nd max number of rectangles
that can be intersected by a straight line segment of length `.

Solution (1/3)

1 Idea: given the line on which the optimal segment lies, we get
a relatively easy one-dimensional problem about intervals.

2 So we just have to �nd a small candidate set of lines (= pairs
of points) to try.

Statistics: 19 submissions, 0 accepted

Problem Author: Pål Grønås Drange and Markus Dregi NCPC 2018 solutions



F � Firing the Phaser

Problem

Given set of axis-aligned rectangles, �nd max number of rectangles
that can be intersected by a straight line segment of length `.

Solution (2/3)

1 Possible pitfall: assume optimal solution passes through two
corners.

Statistics: 19 submissions, 0 accepted

Problem Author: Pål Grønås Drange and Markus Dregi NCPC 2018 solutions



F � Firing the Phaser

Problem

Given set of axis-aligned rectangles, �nd max number of rectangles
that can be intersected by a straight line segment of length `.

Solution (2/3)

1 Possible pitfall: assume optimal solution passes through two
corners. This is false:

Statistics: 19 submissions, 0 accepted

Problem Author: Pål Grønås Drange and Markus Dregi NCPC 2018 solutions



F � Firing the Phaser

Problem

Given set of axis-aligned rectangles, �nd max number of rectangles
that can be intersected by a straight line segment of length `.

Solution (3/3)

1 Lemma: can assume that optimal solution
1 passes through a corner of some rectangle, and

2 either passes through another corner, or ends along the sides of
two other rectangles (as in previous picture).

2 So we can take as candidates all lines of these two types. First
type is trivial to generate.

3 For type 2, need to �nd all lines of length ` through some
point P , with one endpoint on line L1 and another on line L2

4 Working out the math this becomes a degree 4 polynomial
equation (can also solve it numerically with less math)

Statistics: 19 submissions, 0 accepted

Problem Author: Pål Grønås Drange and Markus Dregi NCPC 2018 solutions



F � Firing the Phaser

Problem

Given set of axis-aligned rectangles, �nd max number of rectangles
that can be intersected by a straight line segment of length `.

Solution (3/3)

1 Lemma: can assume that optimal solution
1 passes through a corner of some rectangle, and
2 either passes through another corner, or ends along the sides of

two other rectangles (as in previous picture).

2 So we can take as candidates all lines of these two types. First
type is trivial to generate.

3 For type 2, need to �nd all lines of length ` through some
point P , with one endpoint on line L1 and another on line L2

4 Working out the math this becomes a degree 4 polynomial
equation (can also solve it numerically with less math)

Statistics: 19 submissions, 0 accepted

Problem Author: Pål Grønås Drange and Markus Dregi NCPC 2018 solutions



F � Firing the Phaser

Problem

Given set of axis-aligned rectangles, �nd max number of rectangles
that can be intersected by a straight line segment of length `.

Solution (3/3)

1 Lemma: can assume that optimal solution
1 passes through a corner of some rectangle, and
2 either passes through another corner, or ends along the sides of

two other rectangles (as in previous picture).
2 So we can take as candidates all lines of these two types. First

type is trivial to generate.

3 For type 2, need to �nd all lines of length ` through some
point P , with one endpoint on line L1 and another on line L2

4 Working out the math this becomes a degree 4 polynomial
equation (can also solve it numerically with less math)

Statistics: 19 submissions, 0 accepted

Problem Author: Pål Grønås Drange and Markus Dregi NCPC 2018 solutions



F � Firing the Phaser

Problem

Given set of axis-aligned rectangles, �nd max number of rectangles
that can be intersected by a straight line segment of length `.

Solution (3/3)

1 Lemma: can assume that optimal solution
1 passes through a corner of some rectangle, and
2 either passes through another corner, or ends along the sides of

two other rectangles (as in previous picture).
2 So we can take as candidates all lines of these two types. First

type is trivial to generate.
3 For type 2, need to �nd all lines of length ` through some

point P , with one endpoint on line L1 and another on line L2

4 Working out the math this becomes a degree 4 polynomial
equation (can also solve it numerically with less math)

Statistics: 19 submissions, 0 accepted

Problem Author: Pål Grønås Drange and Markus Dregi NCPC 2018 solutions



F � Firing the Phaser

Problem

Given set of axis-aligned rectangles, �nd max number of rectangles
that can be intersected by a straight line segment of length `.

Solution (3/3)

1 Lemma: can assume that optimal solution
1 passes through a corner of some rectangle, and
2 either passes through another corner, or ends along the sides of

two other rectangles (as in previous picture).
2 So we can take as candidates all lines of these two types. First

type is trivial to generate.
3 For type 2, need to �nd all lines of length ` through some

point P , with one endpoint on line L1 and another on line L2

4 Working out the math this becomes a degree 4 polynomial
equation (can also solve it numerically with less math)

Statistics: 19 submissions, 0 accepted

Problem Author: Pål Grønås Drange and Markus Dregi NCPC 2018 solutions



F � Firing the Phaser

Problem

Given set of axis-aligned rectangles, �nd max number of rectangles
that can be intersected by a straight line segment of length `.

Solution (3/3)

1 Lemma: can assume that optimal solution
1 passes through a corner of some rectangle, and
2 either passes through another corner, or ends along the sides of

two other rectangles (as in previous picture).
2 So we can take as candidates all lines of these two types. First

type is trivial to generate.
3 For type 2, need to �nd all lines of length ` through some

point P , with one endpoint on line L1 and another on line L2

4 Working out the math this becomes a degree 4 polynomial
equation (can also solve it numerically with less math)

Statistics: 19 submissions, 0 accepted
Problem Author: Pål Grønås Drange and Markus Dregi NCPC 2018 solutions



Random statistics

232 submitting teams

3149 total number of submissions (792 accepted)

6 programming languages used by teams

Ordered by popularity: Python 2/3 (1400), Java
(892), C++ (740), C# (105), C (6), Haskell (6)

(Top 3 languages are in reverse order from the �usual�
one! Python, Java and C# increased in popularity, all
other languages decreased.)

381 number of lines of code used in total by the shortest
jury solutions to solve the entire problem set. (Much
smaller than usual.)

NCPC 2018 solutions



What next?

Northwestern Europe Regional Contest
(NWERC)

Nov. 23-25 in Eindhoven (Netherlands)

Teams from Nordic, Benelux, Germany,
UK, Ireland, and Estonia.

Each university sends up to two teams to NWERC to �ght for spot
in World Finals (April 2019 in Porto, Portugal)

NCPC 2018 solutions



What next?

Northwestern Europe Regional Contest
(NWERC)

Nov. 23-25 in Eindhoven (Netherlands)

Teams from Nordic, Benelux, Germany,
UK, Ireland, and Estonia.

Each university sends up to two teams to NWERC to �ght for spot
in World Finals (April 2019 in Porto, Portugal)

NCPC 2018 solutions


